Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering

نویسندگان

  • Min Sup Hur
  • Gregory Penn
  • Jonathan S. Wurtele
  • Ryan Lindberg
چکیده

A numerical code based on an eikonal formalism has been developed to simulate laser-plasma interactions, specifically Raman backscatter (RBS). In this code, the dominant laser modes are described by their wave envelopes, avoiding the need to resolve the laser frequency; appropriately time-averaged equations describe particle motion. The code is fully kinetic, and thus includes critical physics such as particle trapping and Landau damping which are beyond the scope of the commonly used fluid three-wave equations. The dominant forces on the particles are included: the ponderomotive force resulting from the beat wave of the forward and backscattered laser fields and the self-consistent plasma electric field. The code agrees well, in the appropriate regimes, with the results from three-wave equations and particle-in-cell simulations. The effects of plasma temperature on RBS amplification are studied. It is found that increasing the plasma temperature results in modification to particle trapping and the saturation of RBS, even before the onset of Landau damping of the plasma wave. This results in a reduction in the coupling efficiency compared to predictions based on the three-wave equations. © 2004 American Institute of Physics. [DOI: 10.1063/1.1796351]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chirped pulse Raman amplification in warm plasma: towards controlling saturation

Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to ...

متن کامل

Laser pulse compression and amplification via Raman backscattering in plasma

A simple theoretical model is proposed for the interaction between two counter-propagating laser pulses (a pump and a seed pulse) in unmagnetized plasma. Pulse compression and amplification are observed via numerical simulation. A one dimensional fluid model for stimulated Raman backscattering is proposed to investigate the pulse compression and pulse amplification mechanisms. To accomplish thi...

متن کامل

Stimulated Raman backscattering of laser radiation in deep plasma channels

Stimulated Raman backscattering (RBS) of intense laser radiation confined by a single-mode plasma channel with a radial variation of plasma frequency greater than a homogeneous-plasma RBS bandwidth is characterized by a strong transverse localization of resonantly-driven electron plasma waves (EPW). The EPW localization reduces the peak growth rate of RBS and increases the amplification bandwid...

متن کامل

A Vlasov Code Simulation of the Amplification of Seed Pulses by Brillouin Backscattering in Plasmas

We use an Eulerian Vlasov code to study the problem of the amplification of seed pulses by Brillouin backscattering in the strong-coupling regime. In this process, there is an energy transfer, mediated by a resonant ion wave, from a long, high energy pump electromagnetic wave, to an initially counter-propagating ultra-short seed pulse. The code solves the onedimensional Vlasov-Maxwell set of eq...

متن کامل

Storing, retrieving, and processing optical information by Raman backscattering in plasmas.

By employing stimulated Raman backscattering in a plasma, information carried by a laser pulse can be captured in the form of a very slowly propagating plasma wave that persists for a time long compared with the pulse duration. If the plasma is then probed with a short laser pulse, the information stored in the plasma wave can be retrieved in a second scattered electromagnetic wave. The recordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004